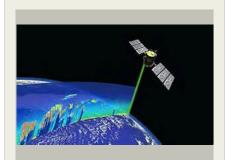
Ultra Large Core High Energy Fiber Amplifier, Phase I

Completed Technology Project (2015 - 2016)


Project Introduction

Laser transmitters operating at a pulse repetition rate of 20 Hz to 50 Hz and with pulse energy from 30 - 50 mJ have been considered to be an enabling technology for CO2 measurement and optical communications. PolarOnyx proposes a novel approach targeting to make reliable high energy ultra large core fiber amplifier at 1.57 micron and employing our proprietary technologies in specialty fibers, spectral shaping and pulse shaping techniques. At the end of Phase 1, and simulation study will be carried out and feasibility experiment will be demonstrated in laying out the pathway towards over 30 mJ high energy. A prototype will be demonstrated at the end of Phase II.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Polaronyx, Inc.	Lead Organization	Industry Small Disadvantaged Business (SDB)	San Jose, California
Langley Research Center(LaRC)	Supporting Organization	NASA Center	Hampton, Virginia
Lawrence Livermore National Laboratory(LLNL)	Supporting Organization	R&D Center	Livermore, California

Ultra Large Core High Energy Fiber Amplifier, Phase I

Table of Contents

Project Introduction		
Primary U.S. Work Locations		
and Key Partners	1	
Project Transitions		
Images		
Organizational Responsibility		
Project Management		
Technology Maturity (TRL)		
Technology Areas		
Target Destinations		

Small Business Innovation Research/Small Business Tech Transfer

Ultra Large Core High Energy Fiber Amplifier, Phase I

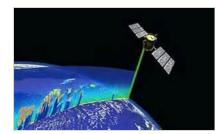
Completed Technology Project (2015 - 2016)

Primary U.S. Work Locations		
California	Virginia	

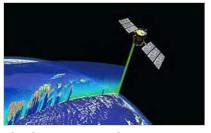
Project Transitions

C

June 2015: Project Start


June 2016: Closed out

Closeout Summary: Ultra Large Core High Energy Fiber Amplifier, Phase I Project Image


Closeout Documentation:

• Final Summary Chart Image(https://techport.nasa.gov/file/141182)

Images

Briefing Chart ImageUltra Large Core High Energy Fiber
Amplifier, Phase I
(https://techport.nasa.gov/imag
e/132075)

Final Summary Chart ImageUltra Large Core High Energy Fiber
Amplifier, Phase I Project Image
(https://techport.nasa.gov/imag
e/129538)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Polaronyx, Inc.

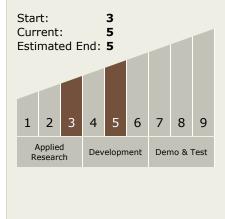
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Jian Liu

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Ultra Large Core High Energy Fiber Amplifier, Phase I

Completed Technology Project (2015 - 2016)

Technology Areas

Primary:

- TX10 Autonomous Systems
 □ TX10.1 Situational and
 Self Awareness
 □ TX10.1.2 State
 - TX10.1.2 State
 Estimation and
 Monitoring

Target Destinations

The Moon, Mars, Outside the Solar System, The Sun, Earth, Others Inside the Solar System

